Come si fa a trovare l'area di una regione di piano limitata da una retta e da una parabola(gli estremi di integrazione sono le ascisse dei punti d'intersezione).
Grazie mille!
Printable View
Come si fa a trovare l'area di una regione di piano limitata da una retta e da una parabola(gli estremi di integrazione sono le ascisse dei punti d'intersezione).
Grazie mille!
no spe boiata, integrale normale?
Che dati hai?
Comunque basta che fai l'integrale definito della funzione della retta nei punti di intersezione A e B, quindi integri la funzione e poi sotituisci i punti sottraendo F(b) a F(a)
in parole povere, integrale da (a) a (b) di f(x) = F(b) - F(a)
E' il concetto base di integrale -.-
Ok :elfhat: Non sono un asso a matematica :confused:
e' a memoria 1 di quelle caxxate per vedere se 1 ha studiato.. nn occorre integrare perche' e' 1 area nota dalla formula (mi pare di eulero) dove l'area e' 2/3 dell area del rettangolo tra la retta e la fine del parabola :
cmq http://www.itismeucci.it/corradobrogi/II/II-328.htm
Ergo nn stare ad integrare che fai na figura de merda :D e usa formule note :D
eh bè viva riempirsi la testa di formule inutili valide per un unico caso... ^^